Используются в подпрограммах:
conditional_waveform_assignment ::= [§ 10.5.3]
target <= [ delay_mechanism ] conditional_waveforms ;
delay_mechanism ::= [§ 10.5.2.1] transport | [ reject time_expression ] inertial
Пример транспортной задержки:
transmission_line : process (line_in) is begin line_out <= transport line_in after 500 ps; end process transmission_line;
Пример инерционной задержки:
inv : process (a) is
begin
  y <= inertial not a after 3 ns;
или
  y <= not a after 3 ns;
end process inv;
inv : process (a) is begin y <= reject 2 ns inertial not a after 3 ns; end process inv;
asym_delay : process (a) is
  constant Tpd_01 : time := 800 ps;
  constant Tpd_10 : time := 500 ps;
begin
  if a then
    z <= transport a after Tpd_01;
  else -- not a
    z <= transport a after Tpd_10;
  end if;
end process asym_delay;  
loop_statement ⇐
  [ loop_label : ] loop
           { последовательные операторы }
    end loop [ loop_label ] ;
entity counter is
  port ( clk   : in  bit;
         count : out natural );
end entity counter;
architecture behavior of counter is
begin
  incrementer : process is
    variable count_value : natural := 0;
  begin
    count <= count_value;
    loop
      wait until clk;
      count_value := (count_value + 1) mod 16;
      count <= count_value;
    end loop;
  end process incrementer;
end architecture behavior;
exit_statement ::= [§ 10.2] [ label : ] exit [ loop_label ] [ when condition ] ;
| 
 loop
   if condition then
     exit;
   end if;
 end loop;
 | 
 loop
   ...
   exit when ''условие'';
   ...
 end loop;
 ...      -- Управление перейдёт сюда
          -- при выполнения условия внутри цикла loop | 
loop_name : loop ... exit loop_name; ... end loop loop_name;
loop_statement ⇐
   [ loop_label : ]
    while condition loop
      { sequential_statement }
    end loop [ loop_label ] ;
while index > 0 loop ... -- statement A: do something with index end loop; ... -- statement B
loop_statement ⇐
  [ loop_label : ]
    for identifier in discrete_range loop
         { sequential_statement }
    end loop [ loop_label ] ;
discrete_range ⇐ simple_expression ( to | downto ) simple_expression
for count_value in 0 to 127 loop count_out <= count_value; wait for 5 ns; end loop;
concurrent_assertion_statement ⇐
  [ label : ]
    assert condition
  [ report expression ] [ severity expression ] ;
assert initial_value <= max_value report "initial value too large";
assert current_character >= '0' and current_character <= '9' report "Input number " & input_string & " contains a non-digit";
check : assert not (s and r)
          report "Incorrect use of S_R_flip_flop: " &
                 "s and r both '1'";
type severity_level is (note, warning, error, failure);
assert free_memory >= low_water_limit report "low on memory, about to start garbage collect" severity note;
wait_statement ⇐
  [ label : ] wait [ on имя_сигнала { , ... } ]
                   [ until условие ]
                   [ for выражение_типа_time ] ;
| Эквивалентные описания процесса | |
|---|---|
| half_add : process is begin sum <= a xor b after T_pd; carry <= a and b after T_pd; wait on a, b; end process half_add; | half_add : process (a, b) is begin sum <= a xor b after T_pd; carry <= a and b after T_pd; end process half_add; | 
| 
  signal clk1 : std_logic := '0';
  signal clk2,clk3,clk4 : std_logic;
  ....
  clock_gen : process is
  begin
    clk1 <= '1' after 11 ns, '0' after 25 ns;
    wait until clk1 = '0';
  end process clock_gen;
 | ||
| 
 pp1 : process is
  begin
    wait on clk1;
    clk2 <= clk1 after 1 ns;
  end process pp1;
 | 
 pp2 : process is
  begin
    clk3 <= clk1 after 1 ns;
    wait on clk1;
  end process pp2;
 | 
  pp3 : process (clk1) is
  begin
    clk4 <= clk1 after 1 ns;
  end process pp3;
 | 
process is begin -- process strob <= '0'; wait for 45 ns; strob <= '1'; wait for 5 ns; end process;
wait on clk until reset = '1';
reset = '1' будет проверяться только в момент изменения clk
wait until trigger = '1' for 1 ms;
trigger = '1', но не более 1 мс  
subprogram_body ⇐
   procedure identifier [ ( parameter_interface_list ) ] is
     { subprogram_declarative_part }
   begin
     { sequential_statement }
   end [ procedure ] [ identifier ] ;
return_statement ⇐ [ label : ] return ;
interface_list ⇐
   ( [ constant | variable | signal ]
       identifier { , ... } : [ mode ] subtype_indication
                       [ := static_expression ] ) { ; ... }
   mode ⇐ in | out | inout
procedure do_arith_op ( op : in func_code ) is
  variable result : integer;
begin
  case op is
    when add =>
       result := op1 + op2;
    when subtract =>
       result := op1 - op2;
  end case;
  dest <= result after Tpd;
  Z_flag <= result = 0 after Tpd;
end procedure do_arith_op;
library ieee; use ieee.std_logic_1164.all; entity signal_generator is end entity signal_generator; architecture top_level of signal_generator is signal raw_signal : std_ulogic; procedure generate_pulse_train ( width, separation : in delay_length; number : in natural; signal s : out std_ulogic ) is begin for count in 1 to number loop s <= '1', '0' after width; wait for width + separation; end loop; end procedure generate_pulse_train; begin raw_signal_generator : process is begin generate_pulse_train ( width => 20 ns, separation => 10 ns, number => 10, s => raw_signal ); generate_pulse_train ( width => 5 ns, separation => 20 ns, number => 10, s => raw_signal ); wait; end process raw_signal_generator; end architecture top_level;
subprogram_body ⇐
  [ pure I impure ]
  function identifier [ ( parameter_interface_list ) ] return type_mark is
    { subprogram_declarative_item }
  begin
    { sequential_statement }
  end [ function ] [ identifier ] ;
return_statement ⇐ [ label : ] return expression ;
function_call ⇐ function_name [ ( parameter_association_list ) ]
function limit ( value, min, max : integer ) return integer is
begin
  if value > max then
    return max;
  elsif value < min then
    return min;
  else
    return value;
  end if;
end function limit;